基于高分辨率T2WI的影像组学对直肠癌EGFR表达的预测价值
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

R735.37

基金项目:

四川省自贡市重点研发计划项目(2020YLSF17);


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
    摘要:

    目的:探讨基于高分辨率T2WI的影像组学对直肠癌EGFR表达状态的预测价值。方法:回顾性分析经术后病理确诊且在接受治疗前行MRI检查的208例直肠癌患者的临床及影像资料,根据EGFR表达水平不同将患者分为阳性组和阴性组。在高分辨率T2WI图像上勾画病灶的三维容积兴趣区(VOI)并提取影像组学特征,将208例患者分为训练集(n=145)和测试集(n=63),并对特征进行降维,将降维后的特征建立支持向量机(SVM)、逻辑回归(LR)、随机森林(RF)及线性判别分析(LDA)四种分类器学习模型,分别绘制训练集和测试集的受试者工作特征(ROC)曲线,并获得曲线下面积(AUC)。结果:208例患者中,EGFR阳性表达99例(47.6%)。二元Logistic回归分析显示示低分化和淋巴结转移是EGFR阳性表达的独立危险因素(P<0.05)。训练集与测试集的患者在性别、年龄、TN分期及分化程度差异均无统计学意义(P>0.05)。4种影像组学模型均有一定的预测效能,其中SVM模型训练集与测试集的诊断效能均为最高,在训练集和测试集中的AUC分别为0.803、0.725。结论:基于高分辨率T2WI图像构建的影像组学模型对直肠癌EGFR表达状态具有一定预测价值。

    Abstract:

    参考文献
    相似文献
    引证文献
引用本文

胡友强;罗敏;董小娟;邹龙权;谢刚;张远林;刘文军;姜萍;.基于高分辨率T2WI的影像组学对直肠癌EGFR表达的预测价值[J].川北医学院学报,2024,39(3):358-362.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-08-20
  • 出版日期:
文章二维码