摘要:目的:探究胃组织病理图像数据集的卷积神经网络(CNN)模型对胃癌(GC)的早期预测价值,开发并验证GC早期预测模型。方法:将154例GC患者按照分期不同分为早期组(n=87)和中晚期组(n=67)。采用Logistic回归分析临床协变量;使用卷积神经网络(CNN)特征提取模型,搭建CNN预测模型;受试者工作特征(ROC)曲线评估区分度,校准曲线评估准确度。结果:年龄、基础疾病、幽门螺旋菌感染、红细胞计数(RBC)、白细胞计数(WBC)是GC的独立危险因素。最佳的CNN特征提取模型为3个卷积层、2个池化层和1个全连接层。CNN的各项指标均优于其他模型;校准曲线分析,CNN模型的拟合效果显著。结论:基于胃组织病理图像数据集的CNN模型具有良好的预测性能,临床可行性较好。