基于增强CT的直方图参数在重症急性胰腺炎死亡风险评估中的应用价值研究
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(82371961); 川北医学院附属医院揭榜挂帅项目(2022JB001);


Application value of contrast-enhanced CT histogram parameters in mor-tality risk assessment of severe acute pancreatitis
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
    摘要:

    目的:通过非局部均值降噪(NLM)技术优化增强计算机断层扫描(CECT)图像质量,构建基于直方图参数的重症急性胰腺炎(SAP)患者死亡风险预测模型。方法:回顾性分析74例SAP患者的临床、实验室及CECT数据。对动静脉期图像进行不同噪声系数水平下的NLM降噪处理。提取降噪前后胰腺三维容积的直方图参数。通过单因素逻辑回归筛选特征后,建立二元逻辑回归预测模型,并与常规CT及临床模型比较。结果:74例SAP患者中,27例(36.5%)死亡。基于NLM降噪前后的图像共构建了8个直方图模型,各模型预测效能间无统计学差异(P>0.05)。直方图模型在死亡风险预测中优于常规CT模型及临床模型(P=0.009,P=0.048),而临床模型与常规CT模型效能相近(P=0.699)。结论:CECT直方图参数能有效预测SAP患者死亡风险,NLM降噪后模型性能稳定,其噪声鲁棒性及量化优势弥补了常规CT的局限。

    Abstract:

    Objective:To optimize contrast-enhanced computed tomography(CECT)image quality using Non-Local Means(NLM)denoising technology and construct a mortality risk prediction model for severe acute pancreatitis(SAP)patients based on his-togram parameters.Methods:Retrospective analysis of clinical,laboratory,and CECT data of 74 patients diagnosed with SAP.NLM de-noising was applied to arterial and portal venous phase images at different coefficient levels.Three-dimensional volumes of interest were manually delineated in pancreatic parenchyma on original and denoised images,followed by histogram parameter extraction.After univa-riate Logistic regression feature selection,binary Logistic regression models were built to predict SAP mortality risk and compared with clinical models and conventional CT models.Results:A total of 74 patients with SAP,of whom 27(36.5%)died.After applying NLM-based noise reduction to arterial phase and portal venous phase CECT images,8 histogram prediction models were constructed under dif-ferent noise coefficient levels.There was no significant difference in predictive performance among these histogram models(P>0.05).Compared to conventional CT models and clinical models,the histogram models demonstrated higher accuracy in predicting mortality risk(P=0.009,P=0.048).The predictive performance of the clinical model and the conventional CT model was similar(P=0.699).Conclusion:CECT histogram parameters show significant clinical value in predicting mortality risk in SAP patients,maintaining stable performance under different noise coefficient levels after NLM denoising.Their noise robustness and quantitative a-nalysis advantages compensate for the limitations of conventional CT.

    参考文献
    相似文献
    引证文献
引用本文

陶迪;赵自胜;陈俊辉;张小明;.基于增强CT的直方图参数在重症急性胰腺炎死亡风险评估中的应用价值研究[J].川北医学院学报,2025,40(5):562-568.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-07-09
  • 出版日期:
文章二维码