脑梗死血管内治疗后无效再通相关因素分析及风险预测模型的构建
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

广东省东莞市社会发展科技项目(20211800905182);


The analysis of factors related to futile recanalization after endovascular treatment for cerebral infarction and construction of risk prediction model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
    摘要:

    目的:研究脑梗死血管内治疗(EVT)后无效再通的相关因素,并构建Nomogram列线图风险预测模型。方法:选取144例行EVT干预的脑梗死患者作为研究对象,根据是否发生无效再通分为有效再通组(n=78)和无效再通组(n=66)。比较两组患者各临床特征指标水平。按7∶3比例随机将患者分为训练集(n=101)和测试集(n=43)。在训练集中,利用Lasso回归方法筛选特征因素,以Logistic多因素回归模型进行影响因素分析。以R语言绘制风险预测模型,并对模型进行验证。采用受试者工作特征(ROC)曲线评估模型的准确性。结果:训练集中48例发生无效再通,发生率为47.52%;测试集中18例发生无效再通,发生率为41.86%。Logistic多因素回归分析结果显示,合并感染并发症(β=1.566,95%CI=1.217~18.839,P=0.025)和出院时NIHSS评分(β=0.949,95%CI=1.841~3.626,P<0.001)是脑梗死EVT后无效再通的高危因素。根据Logistic多因素回归分析结果,建立脑梗死EVT后无效再通的Nomogram风险预测模型。ROC分析结果显示,Nomogram列线图用于训练集与测试集患者判断无效再通的曲线下面积(AUC)分别为0.845和0.862。结论:脑梗死EVT后无效再通与是否合并感染、出院时NIHSS评分相关,据此建立的Nomogram预测模型预测无效再通的准确性较高。

    Abstract:

    Objective:To study the related factors of futile recanalization after endovascular treatment(EVT)for cerebral infarc-tion and construct a Nomogram column chart risk prediction model.Methods:144 patients with cerebral infarction treated with EVT in-tervention were selected as the research subjects,the patients were divided into effective recanalization group(n=78)and futile reca-nalization group(n=66),which accorded to whether ineffective recanalization occurred.The levels of clinical characteristic were com-pared between the two groups of patients.The patients were randomly divided into training set(n=101)and testing set(n=43)by 7∶3 ratio.In the training set,the Lasso regression method was used to screen feature factors,the impact factor was analysed by Logistic multiple regression model,the R language was used to draw risk prediction model,and conduct validation.The receiver operating char-acteristic(ROC)was used to evaluate the accuracy of the model.Results:There were 48 cases experienced futile recanalization in the training set,the incidence rate was47.52%,while there were18 cases experienced futile recanalization in the testing set,the incidence rate was 41.86%.The results of Logistic multiple regression analysis showed that comorbidities of infection(β=1.566,95%CI=1.217~18.839,P=0.025)and the NIHSS score at discharge(β=0.949,95%CI=1.841~3.626,P<0.001)were high-risk fac-tors for futile recanalization after EVT in cerebral infarction.A Nomogram risk prediction model for futile recanalization after cerebral in-farction EVT were established,which based on Logistic multivariate analysis results.The ROC analysis showed that the AUC of Nomo-gram column chart to determine futile recanalization were 0.845 and 0.862 respectively in the training set and testing set.Conclusion:The futile recanalization after EVT in cerebral infarction are related to comorbidities of infection and NIHSS score at discharge.Based on these,a Nomogram prediction model is established,it has high accuracy in predicting futile recanalization.

    参考文献
    相似文献
    引证文献
引用本文

陈炳尧;钟伙花;成蔚阳;屈剑锋;.脑梗死血管内治疗后无效再通相关因素分析及风险预测模型的构建[J].川北医学院学报,2025,40(5):628-632.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-07-09
  • 出版日期:
文章二维码