基于多变量分析和机器学习的肺结节恶性风险预测模型的开发与验证
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

四川省医学会项目(2021HR24); 精准医学四川省重点实验项目(2022KF-03);


Development and validation of a malignancy risk prediction model for pul-monary nodules based on multivariable analysis and machine learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
    摘要:

    目的:旨在开发一个稳健且具有广泛适用性的针对肺结节恶性风险的预测模型,以提高肺结节恶性风险诊断的准确性。方法:回顾性收集在川北医学院附属医院和广安市人民医院诊断并治疗的1 414例肺结节患者的临床数据,通过Meta分析和最小绝对收缩与选择算子(LASSO)筛选与肺结节恶性风险相关的预测因子,通过多变量逻辑回归(LR)进一步优化,确定关键特征。在此基础上,构建了基于这些特征的8种机器学习模型,并通过受试者工作特征(ROC)曲线、校准曲线和临床决策曲线分析(DCA)在训练集和内部验证集中评估模型性能。表现最佳的模型被用于开发列线图,用于患者的风险分层。结果:通过Meta分析、LASSO回归和多变量LR的综合筛选,最终确定了10个关键预测因子,并将其整合至8种不同的机器学习模型中。模型评估显示,LR模型表现最佳,在内部验证集中达到了0.843的曲线下面积(AUC)。此外,基于该模型衍生的列线图在外部时间测试队列中展现了较强的预测能力,AUC为0.770。基于列线图计算的风险评分将患者分为4个风险组,恶性率呈现出从低风险(0%)到极高风险(100%)的梯度分布。结论:本研究开发的预测模型能够有效评估肺结节的恶性风险,可为临床提供有效的风险分层工具。

    Abstract:

    Objective:To develop a robust and widely applicable predictive model to improve the accuracy of diagnosing the ma-lignancy risk of pulmonary nodules.Methods:This study retrospectively collected clinical data from 1,414 patients with pulmonary nod-ules diagnosed and treated at the Affiliated Hospital of North Sichuan Medical College and the Guang'an People's Hospital.Meta-analy-sis and Least Absolute Shrinkage and Selection Operator(LASSO)regression were used to identify predictors related to the malignancy risk of pulmonary nodules.These factors were further optimized by multivariable Logistic regression(LR)to determine key features.Based on these features,8 machine learning models were constructed and evaluated for performance using Receiver Operating Character-istic(ROC)curves,calibration curves,and Decision Curve Analysis(DCA)in the training set and internal validation set.The best-performing model was used to develop a nomogram for risk stratification of patients.Results:Through the combined screening process of Meta-analysis,LASSO regression,and multivariable LR,10 key predictive factors were identified and integrated into eight different ma-chine learning models.Model evaluation demonstrated that the LR model performed best,achieving an Area Under the Curve(AUC)of 0.843 in the internal validation cohort.Additionally,the nomogram derived from this model exhibited strong predictive ability in the ex-ternal validation cohort,with an AUC of 0.770.Risk scores calculated from the nomogram stratified patients into four risk groups,with malignancy rates ranging from 0%in the low-risk group to 100%in the very high-risk group.Conclusion:The prediction model devel-oped in this study effectively assesses the malignancy risk of pulmonary nodules,providing a valuable risk stratification tool for clinical use.

    参考文献
    相似文献
    引证文献
引用本文

胡鑫;姜永杰;石伦光;黑比衣洛;黄语嫣;蒋莉;.基于多变量分析和机器学习的肺结节恶性风险预测模型的开发与验证[J].川北医学院学报,2025,40(6):686-692 712.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-07-09
  • 出版日期:
文章二维码