基于LASSO-Logistic回归分析构建列线图模型评估肩袖损伤患者继发肩周炎的风险
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

河北省医学科学研究课题(20251310);


Construct a nomogram model based on LASSO-Logistic regression analy-sis to evaluate the risk of secondary scapulohumeral periarthritis in pa-tients with rotator cuff injury
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
    摘要:

    目的:探讨基于LASSO-Logistic回归分析方法,筛选肩袖损伤患者继发肩周炎的关键风险因素,构建可视化的列线图预测模型,并通过内部验证评估模型的区分度与校准度,从而为临床提供一种个体化风险评估工具。方法:回顾性分析84例肩袖损伤患者(包括继发肩周炎患者30例,未继发肩周炎患者54例)的临床资料,采用LASSO-Logistic筛查影响肩袖损伤患者继发肩周炎的危险因素,通过列线图可视化预测因子权重;采用受试者工作特征(ROC)曲线和Delong检验评估模型对肩袖损伤患者继发肩周炎的预测效能。结果:经LASSO-Logistic回归分析结果显示,退变性损伤、合并糖尿病、Goutallier分级(Ⅲ-Ⅳ级)、撕裂大小(大)、Patte分级(Ⅲ级)、关节囊厚度(厚)、C反应蛋白(CRP)和血沉(ESR)高表达、25-羟基维生素D[(25(OH)D]低表达是影响肩袖损伤患者继发肩周炎的危险因素(P<0.05);列线图结果显示,Goutallier分级(Ⅲ-Ⅳ级)、撕裂大小(大)、Patte分级(Ⅲ级)、关节囊厚度(厚)是影响肩袖损伤患者继发肩周炎的最强因子,然后是退变性损伤、合并糖尿病、CRP和ESR高表达、25(OH)D低表达。列线图ROC曲线下面积为0.891,Delong检验结果显示,学习集和测试集分别为0.943、0.952,预测值与实际观测值之间差异无统计学意义(P>0.05)。结论:基于LASSO-Logistic回归分析构建列线图模型对肩袖损伤患者继发肩周炎具有良好的预测效能。

    Abstract:

    Objective:To screen the key risk factors for secondary scapulohumeral periarthritis in patients with rotator cuff tear based on LASSO-Logistic regression analysis,construct a visual nomogram prediction model,and evaluate the discrimination and calibra-tion of the model through internal or external verification,so as to provide an individualized risk assessment tool for clinical practice.Methods:The clinical data of 84 patients with rotator cuff injury(including 30 patients with secondary scapulohumeral periarthritis and 54 patients without secondary scapulohumeral periarthritis)were retrospectively analyzed.Logistic regression analysis was employed to identify risk factors for secondary scapulohumeral periarthritis in patients with rotator cuff injury,and the predictive weights were visual-ized using a nomogram.The receiver operating characteristic(ROC)curve and DeLong test were utilized to assess the predictive per-formance of the model for secondary scapulohumeral periarthritis in patients with rotator cuff injury.Results:The results of LASSO-Lo-gistic regression analysis showed that Degenerative injury,diabetes mellitus,Goutallier classification(grade Ⅲ-Ⅳ),tear size(large),Patte classification(grade Ⅲ),joint capsule thickness(thick),high expression of C-reactive protein(CRP)and erythrocyte sedimen-tation rate(ESR),low expression of 25-hydroxyvitamin D[25(OH)D]were the risk factors of secondary scapulohumeral periarthritis in patients with rotator cuff injury Factors(P<0.05).The nomogram analysis revealed that the Goutallier grade(grades Ⅲ-Ⅳ),tear size(large),Patte grade(grade Ⅲ),and joint capsule thickness(thick)were the most significant factors influencing secondary scapu-lohumeral periarthritis in patients with rotator cuff injuries.These were followed by degenerative damage,diabetes mellitus,high levels of CRP and ESR expression,and low levels of 25(OH)D expression.The area under the ROC curve of the nomogram was 0.891.Delong test results showed that the learning set and test set were 0.943 and 0.952,respectively,and there was no significant difference between the predicted value and the actual observed value(P>0.05).Conclusion:The nomogram model based on LASSO-Logistic regression analysis has a good predictive effect on secondary scapulohumeral periarthritis in patients with rotator cuff injury.

    参考文献
    相似文献
    引证文献
引用本文

张丽红;刘小雨;孙源源;王勇刚;.基于LASSO-Logistic回归分析构建列线图模型评估肩袖损伤患者继发肩周炎的风险[J].川北医学院学报,2025,40(7):849-854.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-08-10
  • 出版日期:
文章二维码