基于血清维生素D水平和临床特征构建机器学习模型预测子宫肌瘤发生风险的临床研究
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

川北医学院校级科研项目(CBY20-QA-Z06); 重庆市渝中区科技项目(20202723);


Clinical study on predicting the risk of uterine fibroids using machine learning models based on serum vitamin D levels and clinical characteristics
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
    摘要:

    目的:开发和验证一种基于血清维生素D水平和其他临床特征评估子宫肌瘤发生风险的临床预测模型。方法:回顾性分析304例子宫平滑肌瘤患者和184名正常人的相关临床资料,根据收集资料的不同时间段,分为训练集(n=192)和验证集(n=296)。通过血清维生素D水平和其他五个临床特征构建5种机器学习(ML)预测模型。曲线下面积(AUC)评价模型的效能,并通过外部验证进行模型验证。结果:五个机器学习模型都表现出较好的预测效能(AUC≥0.8)。在模型的外部验证中,相比于其他的机器学习算法,支持向量机(SVM)(AUC=0.941,95%CI:0.927~0.969,敏感度为0.968,特异度为0.801,Brier评分为0.148)展现出了更好的预测效能。结论:血清维生素D水平与其他五种临床特征相结合展现出良好预测子宫肌瘤发生的潜力,而支持向量机(SVM)模型能展现出更好的预测效能。

    Abstract:

    Objective:To develop and validate a clinical prediction model for assessing the risk of uterine fibroid occurrence based on serum vitamin D levels and other clinical characteristics.Methods:A retrospective analysis was conducted on 304 pa-tients with uterine leiomyomas and 184 healthy controls.They were divided into a training set(n=192)and a validation set(n=296)according to different time periods of data collection.Five machine learning(ML)predictive models were developed based on serum vitamin D levels and five other clinical features.The area under the curve(AUC)was used to evaluate the per-formance of the models,and external validation was performed to verify the models.Results:All five machine learning models demonstrated good predictive performance(AUC≥0.8).In external validation,the support vector machine(SVM)model ex-hibited superior predictive performance compared to other machine learning algorithms(AUC=0.941,95%CI:0.927~0.969,sensitivity=0.968,specificity=0.801,Brier score=0.148).Conclusion:The combination of serum vitamin D levels with five other clinical features shows promising potential for predicting the occurrence of uterine fibroids.Among the models tested,the support vector machine(SVM)model demonstrated the best predictive performance.

    参考文献
    相似文献
    引证文献
引用本文

方春玲;唐能欢;胡莉;胡辉权;徐凡;.基于血清维生素D水平和临床特征构建机器学习模型预测子宫肌瘤发生风险的临床研究[J].川北医学院学报,2025,40(10):1318-1322.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-03
  • 出版日期:
文章二维码