基于胰腺导管腺癌及坏死区的MRI机器学习模型对预后预测的价值
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

R735.9

基金项目:

川北医学院附属医院揭榜挂帅科研项目(2022JB001);


Value of MRI machine learning model based on pancreatic ductal adenocarcinoma and necrotic area for prognosis prediction
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
    摘要:

    目的:整合腹部磁共振成像(MRI)的常规影像特征与临床特征,构建机器学习预测模型,以评估肿瘤坏死在胰腺导管腺癌(PDAC)预后中的预测价值。方法:选取139例病理证实PDAC的患者为研究对象。在常规MRI图像上,确定肿瘤有无坏死,筛选与生存相关的常规MRI特征及临床特征,建立COX比例风险模型与随机森林生存模型,分析坏死对PDAC患者预后的预测价值。使用C-指数、时间依赖的受试者工作特征(ROC)曲线、校准曲线、Kaplan-Meier曲线评估模型的预测效能。结果:常规MRI图像上确定的坏死组和非坏死组患者在性别和生存时间差异上有统计学意义(P<0.05)。多因素分析发现年龄、肿瘤大小、坏死比例、是否手术是总生存期(OS)的独立风险因素。随机森林模型在预测PDAC患者总体生存率中表现更优,模型的C指数为0.758(训练组)、0.712(测试组);预测1、2、3年总生存率的曲线下面积(AUC),在训练组分别为0.739、0.716、0.693;在测试组分别为0.704、0.679、0.647。以上结果表明机器学习模型相较常规模型有更好的预测能力。结论:腹部MRI图像上确定的肿瘤坏死对患者预后具有一定的预测价值,随机森林模型能更有效地区分高风险与低风险患者群体。

    Abstract:

    Objective: To integrate conventional imaging features on abdominal magnetic resonance imaging (MRI) with clinical characteristics to construct a machine learning predictive model, and to evaluate the predictive value of tumor necrosis of pancreatic ductal adenocarcinoma (PDAC) in the prognosis. Methods: This study enrolled a total of 139 patients with pathologically confirmed pancreatic ductal adenocarcinoma (PDAC). On conventional MRI images, the presence or absence of tumor necrosis was determined. Conventional MRI features and clinical characteristics associated with survival were screened, and both a Cox proportional hazards model and a random forest survival model were established to analyze the predictive value of necrosis for the prognosis of PDAC patients. The performance of the models was evaluated using the C-index, time-dependent receiver operating characteristic (ROC) curves, calibration curves, and Kaplan-Meier curves. Results: There were statistically significant differences in gender and survival time between the necrosis group and the non-necrosis group of patients as determined on conventional MRI images (P<0.05). Multivariate analysis revealed that age, tumor size, necrosis proportion, and whether surgery was performed were independent risk factors for overall survival (OS). The random forest model demonstrated superior performance in predicting the overall survival rate of PDAC patients, with a C-index of 0.758 (training group) and 0.712 (testing group). The area under the curve (AUC) values for 1-, 2-, and 3-year overall survival rates were 0.739, 0.716, and 0.693 in the training group, and 0.704, 0.679, and 0.647 in the testing group, respectively. The results indicated that machine learning models exhibit better predictive capabilities compared to conventional models. Conclusion: Tumor necrosis determined on abdominal MRI images has predictive value for patient prognosis. The random forest model can more effectively distinguish between high-risk and low-risk patient groups.

    参考文献
    相似文献
    引证文献
引用本文

陈俊辉;陶迪;赵自胜;张小明;.基于胰腺导管腺癌及坏死区的MRI机器学习模型对预后预测的价值[J].川北医学院学报,2025,40(12):1607-1613+1618.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-01-07
  • 出版日期:
文章二维码