基于内质网应激相关基因的卵巢癌预后模型构建及其在免疫治疗预测中的应用
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

R737.31

基金项目:


Construction and application of an endoplasmic reticulum stress-related gene prognostic model in ovarian cancer for predicting immunotherapy response
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
    摘要:

    目的:构建基于内质网应激相关基因的卵巢癌预后模型,系统评估其预测患者生存结局和免疫治疗反应的能力。方法:整合卵巢癌患者转录组数据和临床信息,结合机器学习算法筛选与预后相关的内质网应激相关基因。基于筛选出的关键基因构建风险评分模型,并在独立训练集、验证集及总数据集中评估其预测效能和稳健性。结合单细胞转录组数据探讨关键基因在免疫细胞中的表达特征及潜在调控机制。结果:共识别出9个关键内质网应激相关基因(ERBB2、NHLRC1、CREB3L4、CALR3、MAPK13、OSBPL3、HSD11B2、SLC4A11、GJB1)(P<0.05),所构建模型可有效区分高低风险患者,模型在总数据集中5年曲线下面积(AUC)为0.663,高风险组表现出T细胞功能障碍和免疫逃逸特征(P<0.05)。单细胞RNA测序分析提示,相关基因在特定免疫细胞和肿瘤细胞中特异性表达,可能参与调控免疫微环境。结论:本研究构建并验证了基于9个内质网应激相关基因的卵巢癌预后模型,对预后具有良好的预测及免疫治疗响应评估能力,具有潜在的临床转化价值。

    Abstract:

    Objective: To construct a prognostic model for ovarian cancer based on endoplasmic reticulum stress-related genes (ERSRGs) and systematically evaluate its ability to predict patient survival outcomes and response to immunotherapy. Methods: Transcriptomic data and clinical information of ovarian cancer patients were integrated, and machine learning algorithms were applied to identify ERSRGs associated with prognosis. A risk score model was developed based on the selected key genes, and its predictive performance and robustness were assessed in independent training, validation, and overall cohorts. Single-cell transcriptomic data were further utilized to explore the expression patterns and potential regulatory mechanisms of these key genes within immune cells. Results: Nine key ERSRGs (ERBB2, NHLRC1, CREB3L4, CALR3, MAPK13, OSBPL3, HSD11B2, SLC4A11, GJB1) were identified (P < 0.05). The constructed model effectively stratified patients into high- and low-risk groups, demonstrating a 5-year AUC of 0.663 in the overall cohort. The high-risk group exhibited characteristics of T cell dysfunction and immune escape (P < 0.05). Single-cell RNA sequencing analysis revealed specific expression of these genes in certain immune cell subtypes and tumor cells, suggesting their potential role in modulating the immune microenvironment. Conclusion: A novel prognostic model based on nine ERSRGs was successfully constructed and validated for ovarian cancer, demonstrating robust performance in predicting both prognosis and immunotherapy response. This model provides a theoretical foundation and a potential clinical tool for individualized treatment strategies, showing promising translational value.

    参考文献
    相似文献
    引证文献
引用本文

罗晓静;廖治;.基于内质网应激相关基因的卵巢癌预后模型构建及其在免疫治疗预测中的应用[J].川北医学院学报,2026,41(1):17-23.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-01-30
  • 出版日期:
文章二维码