基于LASSO-Logistic回归构建整合乳酸/白蛋白比值的老年脓毒症合并肺部感染重症监护室患者院内死亡风险预测模型的开发与验证
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

R563.1;R459.7

基金项目:

合肥工业大学工业安全与应急技术安徽省重点实验室自主创新专项项目(PA2024GDSK0097);


Development and validation of an in-hospital mortality risk prediction model integrating lactate-to-albumin ratio for elderly intensive care unit patients with sepsis and pulmonary infection based on LASSO-Logistic regression
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
    摘要:

    目的:探讨影响老年脓毒症合并肺部感染患者院内死亡的关键危险因素,并基于LASSO-Logistic回归算法,构建一个整合乳酸/白蛋白比值(LAR)等指标的院内死亡风险预测模型,旨在为临床早期识别高危患者、优化干预策略提供量化工具。方法:回顾性分析重症监护室(ICU)收治的102例老年(年龄≥65岁)脓毒症合并肺部感染患者作为研究对象,包括根据住院结局(住院28 d内)将患者分为存活组(n=65)与死亡组(n=37)。收集所有患者临床相关资料,采用最小绝对收缩和选择算子(LASSO)回归筛选预测变量,将筛选出的变量纳入多因素Logistic回归分析,建立风险预测模型。采用Bootstrap法进行内部验证,绘制受试者工作特征(ROC)曲线下面积(AUC),Hosmer-Lemeshow拟合优度检验评估模型的区分度和校准度。结果:单因素、LASSO-Logistic回归分析显示,急性生理与慢性健康评分Ⅱ(APACHE II)(OR=1.202,95%CI:1.078~1.326)、序贯器官衰竭评分(SOFA)(OR=1.366,95%CI:1.142~1.590)、LAR(OR=1.581,95%CI:1.242~1.920)和机械通气(OR=5.523,95%CI:1.892~9.155)是患者院内死亡的独立危险因素(P<0.05)。LASSO-Logistic回归预测模型的ROC曲线下面积(AUC)为0.855(95%CI:0.771~0.913);Hosmer-Lemeshow检验显示模型拟合良好(P>0.05);决策曲线分析显示,当概率阈值为0.3~0.7使用预测模型具有较好的临床适用性。结论:基于APACHE II评分、SOFA评分、LAR和机械通气构建的LASSO-Logistic回归预测模型对老年脓毒症合并肺部感染ICU患者院内死亡风险具有良好的预测效能,有助于临床早期识别高危患者并进行干预。

    Abstract:

    Objective: To explore the key risk factors influencing in-hospital mortality in elderly patients with sepsis and pulmonary infection, and to develop and validate a risk prediction model for in-hospital mortality based on the Least Absolute Shrinkage and Selection Operator (LASSO)-Logistic regression algorithm, integrating the lactate-to-albumin ratio (LAR) and other indicators, aiming to provide a quantitative tool for early identification of high-risk patients and optimization of intervention strategies. Methods: A retrospective analysis was conducted on 102 elderly patients (age ≥ 65 years) with sepsis and pulmonary infection admitted to the Intensive Care Unit (ICU). Based on in-hospital outcomes (within 28 days), patients were divided into a survival group (n = 65) and a death group (n = 37). Clinical data of all patients were collected. LASSO regression was used to screen predictive variables. The selected variables were incorporated into multivariate Logistic regression analysis to establish a risk prediction model. The Bootstrap method was employed for internal validation. The area under the receiver operating characteristic curve (AUC) and the Hosmer–Lemeshow goodness-of-fit test were used to evaluate the model’s discrimination and calibration. Results: Univariate and LASSO-Logistic regression analyses revealed that Acute Physiology and Chronic Health Evaluation II (APACHE II) score (OR = 1.202, 95% CI: 1.078–1.326), Sequential Organ Failure Assessment (SOFA) score (OR = 1.366, 95% CI: 1.142–1.590), lactate-to-albumin ratio (LAR) (OR = 1.581, 95% CI: 1.242–1.920), and mechanical ventilation (OR = 5.523, 95% CI: 1.892–9.155) were independent risk factors for in-hospital mortality (P 0.05). Decision curve analysis (DCA) showed that the prediction model had good clinical applicability when the probability threshold ranged from 0.3 to 0.7. Conclusion: The prediction model based on APACHE II score, SOFA score, LAR, and mechanical ventilation, constructed via LASSO-Logistic regression, demonstrates good predictive performance for in-hospital mortality risk in elderly ICU patients with sepsis and pulmonary infection. It aids in the early identification of high-risk patients and facilitates timely intervention.

    参考文献
    相似文献
    引证文献
引用本文

常静静;周娜;王小倩;王楠;.基于LASSO-Logistic回归构建整合乳酸/白蛋白比值的老年脓毒症合并肺部感染重症监护室患者院内死亡风险预测模型的开发与验证[J].川北医学院学报,2026,41(1):94-99.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-01-30
  • 出版日期:
文章二维码